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Abstract With the development of information technol-

ogy and the rapid updating of data sets, the object sets in an

information system may evolve in time when new infor-

mation arrives and redundancy information leaves in real

life. Interval-valued decision information systems are

important type of data decision tables and generalized

models of single-valued information systems. Fast updat-

ing the lower and upper approximations is the core tech-

nology of knowledge discovery that is based rough set

theory in dynamic data environment. Consequently, in this

paper we focus on incremental approaches updating

approximations with dynamic data sets in interval-valued

decision system. Firstly, we define an interval similarity

degree by which a binary relation can be constructed,

followed a rough set model be established. Then, incre-

mental approaches for updating approximations are pro-

posed and the incremental algorithms are shown. At last,

comparative experiments on several UCI data sets show the

proposed incremental updating methods are efficient and

effective for dynamic data sets, namely, these approaches

significantly outperform the classical methods with a dra-

matic reduction in the computational time.

Keywords Dynamic data sets � Incremental knowledge

discovering � Interval similarity degree � Interval-valued
decision information system

1 Introduction

Rough set theory (RST), which was first proposed by

Pawlak in 1980s [23–25], is one of the effective mathe-

matical tool for discovering knowledge in the information

systems and decision systems. The theory has been

demonstrated to be useful in the fields of data mining,

pattern recognition, conflict analysis, decision support and

so on.

However, the data collected from practical problem are

usually real numbers and generally include errors due to

the human cognitive uncertainty and interference of some

random factors in real-life application. Therefor, an infor-

mation system with its attribute values being interval-val-

ued is perhaps more appropriate for describing such data

because one of the useful ways for characterizing the val-

ues of a variable with uncertainty is to use the interval-

valued specified by the properly defined lower and upper

limits of the values that this variable possibly takes. In

recent years, some studies have been investigated in the

context in interval-valued information system. As a coun-

terpart of the interval-number algebra, Yao introduced an

interval-set algebra for representing qualitative information

[35, 37]. Yao and Li compared rough set and interval set

models and showed that these two models provide different

and complementary extensions of the set theory [36].
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Zhang et al. presented a monotonic inclusion measure

approach to rank two intervals [39]. Li et al. proposed a

novel method for extracting rules from an incomplete

decision system by using an interval set model [9]. Leung

et al. presented a rough set method for the discovery of the

a-classification rules in interval-valued decision systems

[8]. Miao et al. developed a new framework of knowledge

reduction in interval-valued information systems based on

the maximal consistent blocks [21]. Dai et al. studied the

uncertainty measurement problem in interval-valued deci-

sion systems based on an extended conditional entropy and

the notion of the possible degree between intervals [6].

Qian et al. introduced a dominance relation to interval-

valued information systems, provided an object-ranking

method using the whole dominance degree of each object,

and proposed an attribute reduction procedure to extract

compact dominance rules [26]. Yang et al. developed a

data complement method to transform an incomplete

interval-valued information system with a dominance

relation into a complete one and proposed six types of

relative reduces according to the different requirements of

simplifying the dominance rules supported by an object

[33, 34]. Gong et al. proposed the rough set theory for the

interval-valued fuzzy information systems [7]. Sun et al.

presented a rough approximation of an interval-valued

fuzzy set and investigated the issue of attribute reduction in

the interval-valued fuzzy information system [28]. Deci-

sion information system is a kind of special information

system which have decision attribute. Li et al. studied the

knowledge reduction in decision formal contexts [18] and

real decision formal contexts [19], respectively. Yang et al.

discussed the rule acquisition and attribute reduction in real

decision formal contexts [38]. Make decision is the core

part of management activity and knowledge discovery.

Hence, we will try doing some discussion about knowledge

discovering in interval-valued decision information system

(IvDIS), in this talk.

With the development of the information society and the

science and technology continue to improve, the number of

data in the databases has increased not only in quantities

but also in scales. The technology of data mining emerges

as the times require and has been successfully applied on

many areas. The incremental learning technique is an

important approach to solve the issue of dynamic data

changing in many fields and this approach have already

received much attention in recent years [1]. Many

researchers have proposed incremental algorithms for

knowledge discovery by RST when the information system

varies with time. Luo et al. point out the present study

focused on the following three cases [17]: The first is the

object set varies with time in the information systems. Shan

and Ziarko presented an RST-based incremental method-

ology for finding all maximally generalized rules and

adaptive modification of these rules when new data become

available [27]. Liu et al. defined a new concept of inter-

esting knowledge based on both accuracy and coverage,

and proposed an incremental model for inducing interest-

ing knowledge when the object set varies over time [12,

13]. Li investigate dynamic maintenance of approximations

in dominance-based rough set approach under the variation

of the object set [16]. Zhang et al. proposed a method of

incrementally updating approximations based on neigh-

borhood rough sets in dynamic data mining [40]. Luo

discussed incremental approaches for updating approxi-

mations in set-valued ordered information systems [17].

Liu studied a rough set-based incremental approach for

learning knowledge in dynamic incomplete information

systems [14]. The second is the attribute set varies with

time in the information systems. Chan presented an

incremental method for updating approximations by using

the concept of lower and upper boundary sets based on

traditional rough sets [2]. Li et al. discussed an attribute

generalization and its relation to feature selection and

feature extraction, and then proposed an incremental

approach for updating approximations under the charac-

teristic relation based rough sets [10, 11]. Liu studied

incremental updating approximations in probabilistic rough

sets under the variation of attributes [15]. The third is the

attribute values varies with time in the information sys-

tems. Chen et al. defined the attribute values coarsening

and refining in information systems as the semantic level

changes, and then proposed an incremental algorithm for

updating the approximations of a concept when coarsening

or refining attribute values [3]. Uncertainty processing

plays a key role in incremental knowledge discovery [31,

32]. It is found that, in a knowledge discovering system, the

modeling of fuzziness and roughness can significantly

improves the system’ performance [20, 29, 30]. Further-

more, in incomplete ordered decision systems, Chen et al.

also presented a method to dynamically maintain approx-

imations of upward and downward unions when attribute

values changes [4, 5]. All these studies help decision

makers to update knowledge with different viewpoints

from different kinds of information systems.

The motivation of this paper is that try to propose an

incremental approaches for knowledge discovering in

dynamic interval-valued decision information system,

namely, incremental updating the upper and lower approxi-

mations with dynamic data sets. In order to guarantee the

proposed incremental updating methods are efficient and

effective for dynamic data sets. In this paper, we define an

interval similarity degree based on intervals’ intersection

and union operations and according the interval similarity

degree construct a binary relation in interval-valued decision

information system at first. Followed, we construct the lower

and upper approximations based the relation which we have
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proposed and some properties are investigated. Then, the

theories of the incremental knowledge discovering with the

dynamic object set in interval-valued decision information

system and two incremental algorithms are proposed when

the objects are deleted or inserted, respectively. At last, the

performances of two incremental algorithms are evaluated

on serval variety of UCI data sets.

The remainder of this paper is organized as follows. In

Sect. 2, some basic concepts of RST and interval-valued

information systems are simply introduced. In Sect. 3, we

define a interval similarity degree between two intervals

and a new binary relation be generated based it, followed,

we construct the rough set model and some properties are

shown. The principles for incremental updating approxi-

mations with the variation of object set are presented, in

Sect. 4. We designed the incremental algorithms for com-

puting approximations based on the previous updating

principles, in Sect. 5. In Sect. 6, performance evaluations

are illustrated and the experiment results have exhibited.

The paper ends with conclusions shown in Sect. 7.

2 Preliminaries

In this section, the basic concepts of RST and some

important properties of interval-valued information system

are reviewed [8, 22, 26, 41, 42].

Given a quadruple I ¼ ðU;C [ fdg;V ; f Þ be an infor-

mation system. U is a finite non-empty set of objects, called

the universe. C is a non-empty finite set of condition

attributes and d is a decision attribute, respectively. And

C \ fdg ¼ ;. With every attribute a 2 C, a set of its values

VA is associated. f : U � C ! V is a total function such

that f ðx; aÞ � Va for every a 2 C; x 2 U. The class of all

subsets of U is denoted by P(U). For X 2 PðUÞ, the

equivalence relation R in a Pawlak approximation space

(U, R) partitions the universe U into disjoint subsets. Such

a partition of the universe is a quotient set of U and is

denoted by

U=R ¼ f½x�R : x 2 Ug:

where ½x�R ¼ fy 2 U : ðx; yÞ 2 Rg is the equivalence class

containing x with respect to R. In the view of granular

computing, equivalence classes are the basic building

blocks for the representation and approximation of any

subset of the universe of discourse. Each equivalence class

may be viewed as a granule consisting of indistinguishable

elements.

Definition 2.1 (see [23, 24]) Let I ¼ ðU;C [ fdg;V; f Þ
be an information system, and X 2 PðUÞ is an basic con-

cept, one can characterize X by a pair of upper and lower

approximations which are

RðXÞ ¼ fx 2 U : ½x�R � Xg;
RðXÞ ¼ fx 2 U : ½x�R \ X 6¼ ;g:

Here, posðXÞ ¼ RðXÞ; negðXÞ ¼ �RðXÞ; bnðXÞ ¼ RðXÞ �
RðXÞ are called the positive region, negative region and

boundary region of X, respectively.

Definition 2.2 (see [22]) Let I1 ¼ ½u1; v1� and I2 ¼ ½u2; v2�
are two intervals. The intersection and union operation of

I1 and I2 are defined as follows

I1 \ I2 ¼ ½maxfu1; u2g;minfv1; v2g�;
I1 [ I2 ¼ ½minfu1; u2g;maxfv1; v2g�:

Definition 2.3 (see [22]) The length of a nonempty

interval I ¼ ½u; v� can be defined as qðIÞ,
qðIÞ ¼ v� u

If u ¼ v the interval just be a single point and the length of

I is qðIÞ ¼ 0. Especially, if I ¼ ½; � is an empty interval, the

length of I is ruled as qðIÞ ¼ 0. It’s obvious that the for any

two intervals I1 and I2, if I1 \ I2 is nonempty, then

qðI1 \ I2Þ� 0; otherwise, qðI1 \ I2Þ ¼ 0.

Definition 2.4 (see [42]) Let I1 ¼ ½u1; v1� and I2 ¼ ½u2; v2�
are two intervals. The interval-inclusion degree of I1 in I2 is

defined by

d12 ¼
qðI1 \ I2Þ
qðI1Þ

The interval-inclusion of I1 include in I2 is d12 and denote

this inclusion relation by I1 �d12 I2. It’s obvious that

0	 d12 	 1 for any two nonempty intervals I1 and I2, but

d12 6¼ d21 in general. They constructed a new binary rela-

tion based on this interval-inclusion degree by following

method. Let (U, C, V, f) is an interval-valued information

system with U ¼ fx1; x2; . . .; xng, B � C and given an

interval-inclusion threshold d 2 ð0; 1� then, the new binary

relation with respect to the attribute subset B is

Rd
B ¼ fðxi; xjÞ 2 U � U : Bðxj �dBji

BðxiÞ; dBji � dÞ. The d-

interval neighborhood of the object xi with respect to B is

denoted by ½xi�dB ¼ fxj 2 U : ðxi; xjÞ 2 Rd
Bg. It is a cluster in

which, each object has the common knowledge to xi at the

d-interval inclusion level with respect to B. The relation Rd
B

which based on the d is reflexive but is neither symmetric

nor transitive. Consequently, in our following study we

define a interval similarity degree and construct a new

binary relation in a similar way.

Definition 2.5 (see [8]) An interval-valued information

system is a quadruple as I ¼ ðU;C;V; f Þ, where U is a

finite non-empty set of objects and C is a finite non-empty

set of attributes, V ¼ [a2CVa and Va is a domain of attri-

bute a, f : U � C ! V is a total function such that
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f ðx; aÞ 2 Va for every a 2 C ,x 2 U, called an information

function, where Va is a set of interval numbers. Denoted by

f ðx; aÞ ¼ ½aLðxÞ; aUðxÞ� ¼ fp : aLðxÞ	 p	 aUðxÞ;
� aLðxÞ;U ðxÞ 2 Rg;

we call it as interval number where x under the attribute a,

and R is the set of real number. Furthermore, if I ¼
ðU;C [ fdg;V; f Þ and d is a decision attribute where

C \ fdg ¼ ;, then I is an interval-valued decision infor-

mation system. In particular, f(x, a) would degenerate into

a real number if aLðxÞ ¼ aUðxÞ. Under this consideration,

we regard a single-valued information system as a special

form of interval information system.

3 Rough sets in interval-valued information
system

In this section, we define a similarity degree between two

intervals and a new binary relation be generated based it in

interval-valued decision information system. Based on the

new binary relation we construct the rough set model and

some properties of it are discussed.

Definition 3.1 Let I1 and I2 are two intervals, the interval

similarity degree of I1 and I2 is defined as follows

d12 ¼
qðI1 \ I2Þ
qðI1 [ I2Þ

where qðIÞ is the length of interval I, \ and [ are inter-

section and union operation, respectively.

It’s obvious that 0	 d12 	 1 for any two nonempty

intervals I1 and I2, and d12 ¼ d21. One can know from this

definition that if I1 � I2, namely, I1 is completely included

in I2. That is for any real number u1 	 r	 v1, we have

u2 	 r	 v2, in this case that d12 ¼ qðI1Þ
qðI2Þ ¼ d21. Especially, if

the I1 or I2 is a real number we ruled d12 ¼ 0. If I1 ¼ I2,

then we can get that d12 ¼ d21 ¼ 1, that is the highest

similarity degree between two intervals, and it means d is

reflexive.

Definition 3.2 Let I ¼ ðU;C [ fdg;V ; f Þ be an interval-

valued decision information system with U ¼
fx1; x2; . . .; xng and for any A � C. We say AðxiÞ �dAij

AðxjÞ
if aðxiÞ �dfag

ij

aðxjÞ for any a 2 A, where dAij ¼ mina2A

fdfagij : dfagij ¼ qðaðxiÞ \ aðxjÞÞ=qðaðxiÞ [ aðxjÞÞg. Given an

interval similarity threshold d 2 ð0; 1� then, we can define a

new binary relation with respect to the attribute subset A as

follows

Rd
A ¼ fðxi; xjÞ 2 U � U : AðxjÞ �dAij

AðxiÞ; dAij � dg;

and based the relation the d-interval neighborhood of the

object xi with respect to A are defined by

½xi�dA ¼ fxj 2 U : ðxi; xjÞ 2 Rd
Ag:

The d-interval neighborhood ½xi�dA is an object set in which

each object xj has the relation Rd
A with xi, namely,

ðxi; xiÞ 2 Rd
A. It can be deemed as a cluster in which with

respect to attribute set A, each object has the common

knowledge to xi at the d-interval similarity level. Given a

permissible threshold d of the interval similarity degree,

the knowledge implied by each object xj in ½xi�dA can be

used to characterize the knowledge of the object xi with

respect to A when the interval similarity degree is d.
Therefore, the d-interval neighborhood of each object with

respect to some attribute subset can be considered as a

basic knowledge granule in which the parameter d is

allowed to be adjustable according to the different per-

spectives of knowledge acquisition in the interval-valued

decision information system. Furthermore, the larger the

value of d is, the smaller the granule ½xi�dA is and the finer

the knowledge represented by ½xi�dA is. Suppose an interval-

valued information system I ¼ ðU;C [ fdg;V; f Þ, let

A � C; d 2 ð0:1�, one can get that the constructed binary

relation Rd
A is reflexive and symmetric but not transitive. It

can be obtained straight from the Definitions 3.1 and 3.2.

Definition 3.3 Let I ¼ ðU;C [ fdg;V ; f Þ be an interval-

valued information system with U ¼ fx1; x2; . . .; xng and

for any A � CandX � U. The lower and upper approxi-

mations of X based on the relation Rd
A are respectively

defined as

Rd
AðXÞ ¼ fx 2 U : ½x�dA � Xg;

Rd
AðXÞ ¼ fx 2 U : ½x�dA \ X 6¼ ;g:

Similar to the lower and upper approximations operators in

the classical rough set theory, the following properties hold

for Rd
AðXÞ and Rd

AðXÞ.

(1) Rd
Að;Þ ¼ Rd

Að;Þ ¼ ;;Rd
AðUÞ ¼ Rd

AðUÞ ¼ U;

(2) Rd
AðXÞ � X � Rd

AðXÞ;
(3) Rd

AðRd
AðXÞÞ ¼ Rd

AðXÞ;Rd
AðRd

AðXÞÞ ¼ Rd
AðXÞ;

(4) Rd
AðXÞ ¼ �Rd

Að�XÞ;Rd
AðXÞ ¼ �Rd

Að�XÞ;
(5) Rd

AðXÞ � Rd
CðXÞ;Rd

AðXÞ 
 Rd
CðXÞ; andBnCðXÞ

� BnAðXÞ;
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(6) If X � Y , then Rd
AðXÞ � Rd

AðYÞ;Rd
AðXÞ � Rd

AðYÞ ;

(7) Rd
AðX \ YÞ ¼ Rd

AðXÞ \ Rd
AðYÞ;Rd

AðX [ YÞ ¼ Rd
AðXÞ

[Rd
AðYÞ;

(8) Rd
AðX [ YÞ 
 Rd

AðXÞ [ Rd
AðYÞ;Rd

AðX \ YÞ � Rd
AðXÞ

\Rd
AðYÞ.

Example 3.1 An interval-valued decision information

system be presented in Table 1. It is a case about the diag-

nosis of myocardial infarction, where U ¼ fx1; x2; . . .; x10g
representatives of ten different patients and C ¼
fa1; a2; . . .; a5g representatives of several enzymes related to

the diagnosis of myocardial infarction. Where a1 represents

Aspartate amino transferase (AST), a2 represents Lactate

dehydrogenase (LDH) and isoenzyme, a3 represents Alfa

hydroxybutyrate dehydrogenase (a�HBDH) , a4 represents

Creatine Kinase (CK), a5 represents Creatine Kinase isoen-

zymes (CKMB). And the different decision attribute values

mean different diagnosis results.

Let A ¼ C, we can obtain a dAij-matrix according to

Definition 3.2 as

Consequently, the d-interval neighborhoods of each object

xi with d ¼ 0:6 are

½x1�0:6A ¼ fx1;x2;x3;x5;x6;x8g; ½x2�0:6A ¼ fx1;x2;x6;x10g;
½x3�0:6A ¼ fx1;x3;x5;x7;x8g;
½x4�0:6A ¼ fx4g; ½x5�0:6A ¼ fx1;x3;x5;x7;x8g;
½x6�0:6A ¼ fx1;x2;x10g; ½x7�0:6A ¼ fx3;x5;x7;x8g;
½x8�0:6A ¼ fx1;x3;x5;x7;x8g; ½x9�0:6A ¼ fx9g; ½x10�0:6A ¼ fx2;x10g:

We can find that the binary relation Rd
A do not constitute a

partition of U in general, but constitute a covering of U. Let

a set X ¼ fx1; x2; x3; x4; x5g, based on above results and

according the Definition 3.3. we can compute the lower and

upper approximations of X as follows. R0:6
A ðXÞ ¼ fx4g;

andR0:6
A ðXÞ ¼ fx1; x2; x3; x4; x5; x6; x7; x8; x10g. Hence, the

positive region are posðXÞ ¼ fx4g, negative region are

negðXÞ ¼ fx9g, and boundary region are bnðXÞ ¼ fx1;
x2; x3; x5; x6; x7; x8; x10g, respectively.

4 Approaches for incremental knowledge
discovering with dynamic data in IvDIS

With the rapid growth of data sets nowadays, the object

sets in an information system may evolve in time when

new information arrives and redundancy information be

deleted. Incremental learning is an efficient technique for

knowledge discovery in a dynamic database, which enables

acquiring additional knowledge from new data without

forgetting prior knowledge. The technology of data mining

emerges as the times require and is successfully applied on

many domains. In the field of data mining, the incremental

learning technique is an important way to solve the prob-

lem of dynamic data changing. In this section, we inves-

tigate the variation of approximations of the dynamic

interval-valued information system when the object set

evolves over time while the attribute set remains constant.

We assume the process for incremental update the

knowledge lasts two stages, namely, from time t to time

t þ 1. By considering the objects may enter into or get out

of an information system at time t þ 1 and we denote a

dynamic interval-valued decision information system at

Md
A ¼

1 0:65 0:8 0 0:83 0:67 0:54 0:68 0:23 0:53

0:65 1 0:51 0 0:56 0:67 0:34 0:50 0:20 0:75

0:80 0:51 1 0 0:82 0:51 0:60 0:64 0:22 0:48

0 0 0 1 0 0 0 0 0 0:15

0:83 0:56 0:82 0 1 0:56 0:66 0:75 0:27 0:46

0:67 0:67 0:51 0 0:56 1 0:34 0:47 0:20 0:65

0:54 0:34 0:60 0 0:66 0:34 1 0:70 0:36 0:37

0:68 0:5 0:64 0 0:75 0:47 0:70 1 0:33 0:38

0:23 0:2 0:22 0 0:27 0:20 0:36 0:33 1 0:17

0:53 0:75 0:48 0:15 0:46 0:65 0:37 0:38 0:17 1

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA
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time t as I ¼ ðU;C [ fdg;V ; f Þ, and at time t þ 1 the

original information system change into I
0 ¼ ðU 0

;C [
fdg;V ; f Þ after insertion or deletion of objects.

Here, we only investigate the incremental approach for

knowledge discovering in the cases that a single object

enter and get out of the interval-valued information system.

The change of multiple objects can be seen as the cumu-

lative change of a single object can be updated step by step

through the updating principles repeat a single object

varies.

4.1 Approaches for incremental knowledge

discovering with the deletion of an object

in an IvDIS

Given an interval-valued decision information system I ¼
ðU;C [ fdg;V; f Þ at time t, After deleting the object x� 2
U the original information system and information gran-

ules ½x�dAðx 2 UandA � CÞ and the equivalence decision

classes Diði 2 f1; . . .; rg, r is the number of decision clas-

ses) will be changed. Then the approximations of Di should

be changed, too. Here, we investigate the approaches for

updating approximations of Di as two cases: x� 2 Di or

x� 62 Di.

Case 1. The deleted object x� belongs to Di, namely,

x� 2 Di.

Proposition 4.1 Let I ¼ ðU;C [ fdg;V; f Þ be an IvDIS

and any A � C. When x� 2 Diði 2 f1; . . .; rgÞ be deleted

from U, the following properties hold for Rd
AðDiÞ

0
and

Rd
AðDiÞ

0
.

(1) If x� 2 Rd
AðDiÞ; thenRd

AðDiÞ
0
¼ Rd

AðDiÞ � fx�g;
Otherwise Rd

AðDiÞ
0
¼ Rd

AðDiÞ.
(2) Rd

AðDiÞ
0
¼ ðRd

AðDiÞ � ½x��dAÞ [ D�
1 , where D�

1 ¼ fx :
x 2 ½x��dA \ D�

2 g and D�
2 ¼ [x2Di�fx�g½x�dA.

Proof (1) Let x� 2 Di be deleted from the universe U,

then, the U be changed into U
0 ¼ U � fx�g and Di be

changed into D
0
i ¼ Di � fx�g. So for any x 2 U

0
, we have

ð½x�dAÞ
0
¼ ½x�dA � fx�g. Because x� 2 Di, so if ½x�dA � Di,

then ð½x�dAÞ
0
� D

0

i. Analogously, if ½x�dA *Di, then

ð½x�dAÞ
0
*D

0
i. Then, according the Definition 3.3, it’s obvi-

ous for any x 2 U
0
, if x 2 Rd

AðDiÞ, then x 2 Rd
AðDiÞ

0
and if

x 62 Rd
AðDiÞ then x 62 Rd

AðDiÞ
0
. Hence, we can obtain if

x� 2 Rd
AðDiÞ, then Rd

AðDiÞ
0
¼ Rd

AðDiÞ � fx�g. Otherwise,

the lower approximation of Di should be remain constant,

i.e. Rd
AðDiÞ

0
¼ Rd

AðDiÞ.
(2) According to the Definition 3.3, we have the

Rd
AðDiÞ ¼ fx : ½x�dA \ Di 6¼ ;g. Thus, when the object x� 2

Di be deleted from U, the set ½x��dA should be removed from

the upper approximation Rd
AðDiÞ at most. In this case, it’s

mean Di \ ½x��dA ¼ fx�g. So, Rd
AðDiÞ

0
¼ Rd

AðDiÞ � ½x��dA.
But, there maybe are y 2 ðDi � fx�gÞ satisfies that D�

1 ¼
½y�dA \ ½x��dA 6¼ ; and the object which x 2 ½y�dA ,where y 2
ðDi � fx�gÞ should not be removed fromRd

AðDiÞ. Therefore,
we can obtain Rd

AðDiÞ
0
¼ ðRd

AðDiÞ � ½x��dAÞ [ D�
1 , where

D�
1 ¼ fx : x 2 ½x��dA \ D�

2 g and D�
2 ¼ [x2Di�fx�g½x�dA.

Thus, the proof is fulfilled. h

Case 2. The deleted object x� does not belongs to Di,

namely, x� 62 Di.

Proposition 4.2 Let I ¼ ðU;C [ fdg;V; f Þ be an IvDIS

and any A � C. When x� 62 Diði 2 f1; . . .; rgÞ be deleted

from U, the following properties hold for Rd
AðDiÞ

0
and

Rd
AðDiÞ

0
.

(1) Rd
AðDiÞ

0
¼ Rd

AðDiÞ [ D�
1 . Where D�

1 ¼ fx : x 2 ðDi�
Rd
AðDiÞÞ, ð½x�dAÞ

0
� Dg, where, if x� 2 ½x�dA then

ð½x�dAÞ
0
¼ ½x�dA � fx�g, otherwise ð½x�dAÞ

0
¼ ½x�dA.

(2) Ifx� 2 Rd
AðDiÞthenRd

AðDiÞ
0
¼ Rd

AðDiÞ � fx�g,
otherwiseRd

AðDiÞ
0
¼ Rd

AðDiÞ.

Proof (1) When the object x� 62 Di be deleted from the

universe U, we have that U
0 ¼ U � fx�g and D

0

i ¼ Di. So,

for anyx 2 U
0
, ð½x�dAÞ

0
¼ ½x�dA � fx�g and it is easy to get

that if ½x�dA � Di then ð½x�dAÞ
0
� D

0
i. According to definition

of lower approximation in Definition 3.3, for any x 2 Di, if

x 2 Rd
AðDiÞ then ð½x�dAÞ

0
� ½x�dA � Di ¼ D

0
i, namely, ð½x�dAÞ

0

� D
0

i. Thus, for any x 2 Rd
AðDiÞ ) x 2 Rd

AðDiÞ
0
. On the

other hand, for for any x 2 ðDi � Rd
AðDiÞÞ, we can get

Table 1 An interval-valued information system

U AST LDH a� HBDH CK CKMB d

x1 [10,40] [100,240] [105,195] [5 ,195] [0 ,24] 2

x2 [10,30] [80 ,210] [80 ,180] [10,190] [0 ,24] 1

x3 [12,45] [105,248] [100,210] [7 ,203] [0 ,23] 2

x4 [5 ,30] [60 ,80 ] [90 ,160] [0 ,180] [0 ,10] 1

x5 [10,46] [110,246] [105,195] [6 ,198] [0 ,26] 2

x6 [10,30] [90 ,200] [96 ,206] [5 ,195] [3 ,24] 2

x7 [13,60] [100,240] [115,200] [20,260] [5 ,30] 3

x8 [10,50] [120,260] [115,210] [8 , 196] [5 ,28] 2

x9 [16,80] [140,260] [102,300] [40, 320] [10,60] 3

x10 [8 ,32] [60 ,196] [80 ,178] [6 , 160] [2 ,20] 1
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½x�dA *Di. However, it maybe exist x� 2 ½x�dA such that

ð½x�dAÞ
0
� Di after the deletion of x�. Then the remain

x should be union to Rd
AðDiÞ

0
, namely,

Rd
AðDiÞ

0
¼ Rd

AðDiÞ [ fxgandð½x�dAÞ
0
� Di. Therefore, we

have Rd
AðDiÞ

0
¼ Rd

AðDiÞ [ D�
1 , where D�

1 ¼ fx : x 2
ðDi � Rd

AðDiÞÞ, ð½x�dAÞ
0
� Digandð½x�dAÞ

0
¼ ½x�dA � fx�g. (2)

Based on Definition 3.3, if x� 2 Rd
AðDiÞ and x� 62 Di then,

there exists an object x 2 Di such that x
� 2 ½x�dA. The object

x� be deleted, so ð½x�dAÞ
0
¼ ½x�dA � fx�g and ð½x�dAÞ

0
\ Di 6¼ ;.

Therefore, the upper approximation of Di become to

Rd
AðDiÞ

0
¼ Rd

AðDiÞ � fx�g. On the other hand, if

x� 62 Rd
AðDiÞ, we have for any x 2 Di, x

� 62 ½x�dA. Hence, the
upper approximation of Di will remain constant, namely,

Rd
AðDiÞ

0
¼ Rd

AðDiÞ.
Thus, the Proposition 4.2 is proved. h

4.2 Approaches for incremental knowledge

discovering with the insertion of a new object

in an IvDIS

Given an interval-valued decision information system I ¼
ðU;C [ fdg;V; f Þ at time t, when the information system is

updated by inserting a new object into the universe U at

time t þ 1, where denotes the inserted object as xþ. There

are three situations may occur: (1) The object xþ be

inserted and exist x 2 Di, such that f ðx; dÞ ¼ f ðxþ; dÞ, then,
Di ¼ Di [ fxþg; (2) for any x 2 Di, f ðx; dÞ 6¼ f ðxþ; dÞ,
then, Di ¼ Di; (3) There exist a special situation, for any

x 2 U, f ðx; dÞ 6¼ f ðxþ; dÞ, namely, insert xþ generates a

new decision class Drþ1 ¼ fxþg.
Case 1. The object xþ be inserted and exist x 2 Di, such

that f ðx; dÞ ¼ f ðxþ; dÞ, then, D0
i ¼ Di [ fxþg.

Proposition 4.3 Let I ¼ ðU;C [ fdg;V; f Þ be an IvDIS

and for any A � C. When the object xþ be inserted into U

and exist x 2 Di ði 2 f1; 2; . . .; rgÞ, such that

f ðx; dÞ ¼ f ðxþ; dÞ. The following properties hold for

Rd
AðDiÞ

0
and Rd

AðDiÞ
0
.

(1) If ½xþ�dA � D
0
i;where D

0
i ¼ Di [ fxþgthen

Rd
AðDiÞ

0
¼ Rd

AðDiÞ [ fxþg,
otherwise; Rd

AðDiÞ
0
¼ Rd

AðDiÞ.
(2) Rd

AðDiÞ
0
¼ Rd

AðDiÞ [ ½xþ�dA.

Proof (1) When the object xþ be inserted into U and exist

x 2 Di; suchthatf ðx; dÞ ¼ f ðxþ; dÞ then D
0
i ¼ Di [ fxþg and

U
0 ¼ U [ fxþg. According to definition, we have for any

x 2 Di, if ½x�dA � Di then x 2 Rd
AðDiÞ. Thus, for any x 2 D

0
i,

if xþ 2 ½x�dA then ð½x�dAÞ
0
¼ ½x�dA [ fxþg. That is, if ½x�dA � Di

then ð½x�dAÞ
0
� D

0

i. Analogously, if ½x�dA *Di then

ð½x�dAÞ
0
*D

0
i. It follows that if x 2 Rd

AðDiÞ then x 2 Rd
AðDiÞ

0
.

If x 62 Rd
AðDiÞ, then x 62 Rd

AðDiÞ
0
. Therefore, if ½x��dA � D

0

i,

we have xþ 2 Rd
AðDiÞ

0
and Rd

AðDiÞ
0
¼ Rd

AðDiÞ [ fxþg.
Otherwise, Rd

AðDiÞ
0
¼ Rd

AðDiÞ.
(2) According to definition, we have

Rd
AðDiÞ

0
¼ fx : ð½x�dAÞ

0
� D

0

ig. Since D
0

i ¼ Di [ fxþg then

we have Rd
AðDiÞ

0
¼ Rd

AðDiÞ
0
[ ½xþ�dA. Because for any x 2 U

there ð½x�dAÞ
0
¼ ½x�dA [ fxþg or ð½x�dAÞ

0
¼ ½x�dA. We can obtain

that Rd
AðDiÞ

0
¼ fx 2 U

0
: ½x�dA � D

0

ig ¼
S

x2Di
½x�dA [ ½xþ�dA

¼ Rd
AðDiÞ [ ½xþ�dA.

Thus, the proof is accomplished. h

Case 2. The object xþ be inserted and for any x 2 Di,

f ðx; dÞ 6¼ f ðxþ; dÞ, then, D0
i ¼ Di.

Proposition 4.4 Let I ¼ ðU;C [ fdg;V; f Þ be an IvDIS

and for any A � C. When the object xþ be inserted into U

and for any x 2 Di, f ðx; dÞ 6¼ f ðxþ; dÞ, i 2 f1; 2; . . .; rg. We

have the following properties about Rd
AðDiÞ

0
and Rd

AðDiÞ
0
.

(1) Rd
AðDiÞ

0
¼ Rd

AðDiÞ � Dþ
1 , where Dþ

1 ¼ fx : x 2
Rd
AðDiÞ; xþ 2 ð½x�dAÞ

0
g.

(2) If there exists x 2 Di such that xþ 2 ½x�dA; then
Rd
AðDiÞ

0
¼ Rd

AðDiÞ [ fxþg;
otherwise Rd

AðDiÞ
0
¼ Rd

AðDiÞ.

Proof (1) When the object xþ be inserted into U, since

f ðx; dÞ 6¼ f ðxþ; dÞ (x 2 Di) we have U
0 ¼ U [ fxþg and

D
0
i ¼ Di. For any x 2 D

0
i, there ð½x�dAÞ

0
¼ ½x�dA or

ð½x�dAÞ
0
¼ ½x�dA [ fxþg. We have if ½x�dA *Di then ½x�dA *D

0

i.

That is, if x 62 Rd
AðDiÞ then x 62 Rd

AðDiÞ
0
. Hence, we only

consider the object x 2 Rd
AðDiÞ, namely, ½x�dA � Di. After

the object xþ be inserted into universe U, there maybe exist

x 2 Rd
AðDiÞ and ð½x�dAÞ

0
¼ ½x�dA [ fxþg then ð½x�dAÞ

0
*D

0
i ¼

Di, namely, x 62 Rd
AðDiÞ

0
. Therefore, we have Rd

AðDiÞ
0
¼

Rd
AðDiÞ � Dþ

1 , where Dþ
1 ¼ fx : x 2 Rd

AðDiÞ; xþ 2 ð½x�dAÞ
0
}.

(2) For any x 2 D
0
i ¼ Di, if x

þ 2 ð½x�dAÞ
0
where ð½x�dAÞ

0
¼

½x�dA [ fxþg then we have xþ 2 Rd
AðDiÞ

0
, that is ,

Rd
AðDiÞ

0
¼ Rd

AðDiÞ [ fxþg. Otherwise, if for any x 2 Di,

xþ 62 ð½x�dAÞ
0
, that is, ð½x�dAÞ

0
¼ ½x�dA. Then, we can get

Rd
AðDiÞ

0
¼ Rd

AðDiÞ.
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Thus, the Proposition 4.4. have been proved. h

Case 3. The object xþ be inserted and for any x 2 U,

f ðx; dÞ 6¼ f ðxþ; dÞ then generates a new decision class

Drþ1 ¼ fxþg.

Proposition 4.5 Let I ¼ ðU;C [ fdg;V; f Þ be an IvDIS

and for any A � C. When the object xþ be inserted into U

and for any x 2 U, f ðx; dÞ 6¼ f ðxþ; dÞ, i 2 f1; 2; . . .; rg.
Then, the approximations of the new decision class Drþ1,

Rd
AðDrþ1Þ and Rd

AðDrþ1Þ can be got as follows.

(1) If½xþ�dA ¼ fxþgthenRd
AðDrþ1Þ ¼ fxþg,

OtherwiseRd
AðDrþ1Þ ¼ ;.

(2) Rd
AðDrþ1Þ ¼ ½xþ�dA.

Proof Because the decision classDrþ1 is a newclass so there

are no previously knowledge about Drþ1. Hence, we should

use the definition of approximations compute the results.

(1) If for any x 2 U; f ðx; dÞ 6¼ f ðxþ; dÞ then a new

decision class be formed as Drþ1 ¼ fxþg. It just

have an nonempty subset, that is fxþg. So according

the Definition 3.3, if ½xþ�dA ¼ fxþg, thenRd
AðDrþ1Þ ¼

fxþg; otherwiseRd
AðDrþ1Þ ¼ ;.

(2) According the Definition 3.2, we can get the binary

relation Rd
A is symmetric. So x 2 ½xþ�dA be equiva-

lence to xþ 2 ½x�dA. Because Drþ1 ¼ fxþg, so Rd
A

ðDrþ1Þ ¼ fx : ½x�dA \ fxþg 6¼ ;g ¼ fx : ½x�dA\ fxþg ¼
fxþg ¼ ½xþ�dA.

Thus, the proof is finished. h

5 Static and incremental algorithms
for computing approximations in an IvDIS
with dynamic object set

In this section,we design the static and incremental algorithms

on the variation of the object set in interval-valued decision

information system, respectively. Their flow-process diagram

of Algorithms and computational complexity are shown.

5.1 The statical algorithm for computing

approximations in an IvDIS

The given static algorithm (Algorithm 1) is the traditional

approach for computing the lower and upper approximations in

an IvDIS when the object set in the information system is

changed. First, we should calculate all the decision classes

U=d ¼ fD1;D2; . . .;Drg and conditional classes ½x�dA for each
x 2 U based Rd

A. Then, compute the lower and upper approx-

imations in IvIS based on theDefinition 3.3. The computational

complexity of Algorithm 1, as shown in Table 2.

In steps 1–3,we compute all decision classes, and the set of

condition classes for each x 2 U based on Rd
A. Steps 4–6,

initialize all lower and upper approximations as empty set.

Steps 8–16, calculate the lower and upper approximations in

IvIS based on the Definition 3.3. At last, return the results.

Table 2 The computational complexity of Algorithm 1

Steps 1–3 OðjUj2 þ jUj2Þ
Steps 4–6 O(r )

Steps 8–15 OðjUj � ðjUj � jDi þ jDijjÞÞ
Total OðUj2 þ

Pr
i¼1 jDij � ðjUj2 þ jUjÞÞ
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5.2 The incremental algorithm for updating

approximations in an IvDIS when deleting

an object

Based on the discussion in previous section, Algorithm 2

was proposed. The given Algorithm 2 is an incremental

algorithm for updating the lower and upper approximations

in an IvIS when the object set be deleted from the universe

U in the interval-valued decision information system.

In Steps 3–16 update the lower and upper approxima-

tions of the decision classed Di, when the deleted object x�

belongs to the decision classes Di. Among them, the steps

4–8 update the lower approximations of Di by Proposition

4.1, steps 9–16 update the upper approximations of Di by

Proposition 4.1. Steps 18–32 update the approximations of

the decision classes Di, where the deleted object x� does

not belong to the decision classes Di. Among them, the

steps 18–26 compute the lower approximations of Di by

Proposition 4.2, steps 27–32 compute the upper approxi-

mations of Di by Proposition 3.2. At last, return the result

of approximations after deleting the object x�. The com-

putational complexity of Algorithm 2, as shown in Table 3.

The flow-process diagram of Algorithm 2 as shown in

Fig. 1.
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5.3 The incremental algorithm for updating

approximations in an IvDIS when inserting

an object

According to discussion in Sect. 4.1. Algorithm 3 was

proposed. The given Algorithm 3 is an incremental algo-

rithm for updating the lower and upper approximations in

an IvDIS when the object set be inserted into the universe

U in the interval-valued decision information system.

In step 1, compute the set ½xþ�dA with respect to the

inserted object xþ based on the relation Rd
A. Steps 3–23,

update the lower and upper approximations of the decision

classes Di when the inserted object xþ will belong to the

decision classes Di or Dj; i 6¼ j. Steps 3–10, update the

approximations of Di by Proposition 4.3. Steps 12–22,

update the approximations of decision class Di where the

inserted object xþ not belong to Di by Proposition 4.4.

Steps 24–31, generate a new decision class and compute

the approximations of the new decision class Drþ1

according the Proposition 4.5. The computational com-

plexity of Algorithm 3 as shown in Table 4. The flow-

process diagram of Algorithm 3 as shown in Fig. 2.

Table 3 The computational

complexity of Algorithm 2
Steps 4–9 OðjRd

AðDiÞj þ jUjÞ
Steps 10–16 OðjUj � jDij � jUjÞ
Steps 19–26 OðjDij � ðjUj þ jUj � jDijÞÞ
Steps 27–31 OðjRd

AðDiÞjÞ
Total Oð

Pr
i¼1 jDijðjRd

AðDiÞj þ jDij2 � jUj þ jDij � jUj2 þ jRd
AðDiÞjÞÞ

( ( ))i A ifor each y D R D

'( ) ( )A i A iR D R D'( ) ( ) { }A i A iR D R D x

Begin

ix D

End

( )A ix R D

'( ) ( ) { }A i A iR D R D x '( ) ( )A i A iR D R D

{ }i iD D x

'( ) ( )A i A iR D R D

[ ]Ax y

[ ] [ ] { }A Ay y x [ ] [ ]A Ay y

[ ]A iy D

'( ) ( ) { }A i A iR D R D y

' 'e : ( ( ) , ( ) )A i A iR turn R D R D

i iD D

'( ) ( )A i A iR D R D

[ ] , { }A ifor each x x y D x

'( ) ( ) [ ]A i A i AR D R D x

' '( ) ( ) { }A i A iR D R D x ' '( ) ( )A i A iR D R D

[ ]Ax y

( )A ix R D

Fig. 1 The flow-process

diagram of Algorithm 2

858 Int. J. Mach. Learn. & Cyber. (2017) 8:849–864

123



6 Experiment evaluations

In this section, to evaluate the performance of the proposed

incremental algorithms, we conduct a series of experiments

to compare the computational time between the statical

algorithm and incremental algorithms for updating

approximations based on standard data sets where down-

load from the machine learning data repository, University

of California at Irvine (http://archive.ics.uci.edu/ml/data

sets.html), They are named ‘‘Energy efficiency’’, ‘‘Airfoil

Self-Noise’’, ‘‘Wine Quality-red’’, ‘‘Wine Quality-white’’,

‘‘Letter Recognition’’, ‘‘Spoken Arabic Digit’’ and the

basic information of data sets is outlined in Table 5.

We must point out that most data sets that we can

download are the single-valued attributes characteristics.

Hence, we should construct the interval-valued information

data by utilizing multiply error precision a based on the

download data sets. Let I ¼ ðU;C [ fdg;V; f Þ be an sin-

gle-valued decision information system, for any

xi 2 Uandaj 2 C, the attribute value of xi at aj is v ¼ ajðxiÞ.
Then, an interval number can be generated as followed

way.
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Iij ¼ ½ð1� aÞ � v; ð1þ aÞ � v�:

In this paper, we set the error precision a ¼ 0:05 and given

an interval similarity threshold d ¼ 0:65. In different fields

one can use different error precisions. After completing this

step the interval-valued decision information system is

obtained. This experimental computing program is running

on a personal computer with following hardware and

software as Table 6.

The objective of the following experiments is to show

the time efficiency of the proposed incremental algorithms

for updating lower and upper approximations while the

object set varies with time and the attribute set keep con-

stant. In order to distinguish the computational times

between static and incremental algorithms, we let the one

data set as the basic data set at time t, and choose another

data set as the test data set. The deletion and insertion

experiments are set as follows, respectively.

• In deletion experiment, let the whole original data set as

the basic data at time t. Then, each experiment choose

one part of the original set (the ratio from 5 to 50 %) as

the immigrating objects which will be deleted from the

information system at time t þ 1.

• In insertion experiment, we choose the 60 % of the

original data sets as the primary data set at time t, and

the remaining parts as the test data. Each test choose a

part of the test data (the ratio from 10 to 100 % ) enter

into the information system at time t þ 1.

We compute the lower and upper approximations in

dynamic object set by static and incremental approaches,

respectively, and record time for each experiment.

6.1 A comparison of computational efficiency

between static and incremental algorithm

with the deletion of the object set

To compare the efficiency of non-incremental algorithm

(Algorithm 1) and incremental algorithm (Algorithm 2) for

computing lower and upper approximations when deleting

the objects from the data sets. We compute the time of the

two algorithms on the given datasets in Table 5 with the

different deleting ratio (from 5 to 50 %), we show the

Table 4 The computational complexity of Algorithm 3

Step 1 O(|U|)

Steps 5–10 OðjDij � jUj þ jUjÞ
Steps 13–17 OðjUj � jRd

AðDiÞjÞ
Steps 18–22 OðjDij � jUjÞ
Steps 24–31 OðjUj � ðjUj þ jUjÞÞ
Total OðjUj þ

Pr
i¼1 jDijjUjðjDij þ jRd

AðDiÞjÞ þ jUj2Þ

'( )A ifor each y R D

NoYes

i iD D

Begin

End

ix D
. . ( , ) ( , )st f x d f x d

,jx D j i
. . ( , ) ( , )st f x d f x d

1: rGenerate D'( ) ( ) [ ]A i A i AR D R D x[ ]A ix D

'( ) ( ) { }A i A iR D R D x '( ) ( )A i A iR D R D

Yes No

' 'e : ( ( ) , ( ) )A i A iR turn R D R D

'( ) { | [ ] }A i AR D x x x1[ ]A rx D

1( )A rR D

'( ) ( )A i A iR D R D y D
. . [ ]Ast x y

'( ) ( ) [ ]A i A i AR D R D x '( ) ( )A i A iR D R D

NoYes

[ ]Ax y

'( ) ( ) { }A i A iR D R D y ' '( ) ( )A i A iR D R D

Yes No

No

1( ) { }A rR D x

Yes

{ }i iD D x

Fig. 2 The flow-process diagram of Algorithm 3
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experimental results in Table 7, and the unit for these

numbers are seconds.

More detailed changing trend-line of each of Algorithms

1 and 2 are illustrated in Fig. 3.

In each sub-figure (a)–(f) of Fig. 3, the x-coordinate

pertains to the ratio of the numbers of the deleting data and

original data, while the y-coordinate concerns the compu-

tational time. According to the experimental results in

Table 7 and Fig. 3, we can find, for the non-incremental

algorithm the computational time for computing approxi-

mations with deletion of the objects from the universe U is

decreasing monotonically along with the increase of ratios.

On the contrary, for the incremental algorithm, we can see

that the computational efficiency for computing approxi-

mations is changing smoothly along with the increase of

deleting ratios. It’s easy to get the incremental algorithm

always performs faster than the non-incremental algorithm

for computing approximations. In sub-figure (a) of Fig. 3,

the two trend-line of two algorithms are very closed when

the ratio is 50 %, that is, when the deletion objects is equal

or bigger than remain objects. It must be note that there is a

threshold depending on the data set. Different data sets

have different thresholds. Once the delete ratio over the

threshold, namely, the deleted data set is bigger than the

remaining data set maybe the incremental algorithm is

slower than the non-incremental. In other five sub-fingers,

the Incremental algorithms’ commotional time are smaller

than static algorithm. So, the incremental algorithm is very

efficiency especially when need to delete the data set is far

smaller than the original data set.

6.2 A comparison of computational efficiency

between static and incremental algorithm

with the insertion of the object set

Similar to the experiment schemes for comparing the

efficiencies between non-incremental and incremental

algorithms when deleting the objects from the universe U,

we also adopt such schemes to compare the performance of

algorithms on the case of inserting the objects into the

universe U. We compute the two algorithms (Algorithms 1

and 3) on the six UCI data sets in Table 5 with the

Table 5 The basic information

of data sets
No. Data set name Abbreviation Objects Attributes Decision classes

1 Energy efficiency EE 768 8 3

2 Airfoil self-noise AS 1503 6 5

3 Wine quality-red WQ-r 1599 11 6

4 Wine quality-white WQ-w 4898 11 7

5 Letter recognition LR 8084 16 14

6 Spoken arabic digit SAD 8800 13 3

Table 6 The description of experiment environment

Name Model Parameters

CPU Intel i3-370 2.40GHz

Memory Samsung DDR3 2GB, 1067MHz

Hard disk West data 500GB

System Windows 7 32 bit

Platform VC?? 6.0

Table 7 A comparison of computational time between Algorithms 1 and 2 versus different updating rates when deleting objects (unit is second)

Del. (%) EE (s) AS (s) WQ-r (s) WQ-w (s) LR (s) SAD (s)

Static Inc. Static Inc. Static Inc. Static Inc. Static Inc. Static Inc.

5 0.826 0.002 2.059 0.008 4.274 0.010 39.983 0.109 234.585 0.632 164.577 0.460

10 0.699 0.009 1.872 0.020 3.844 0.050 35.485 0.478 210.723 2.655 147.547 1.707

15 0.672 0.020 1.661 0.050 3.442 0.101 31.731 1.007 188.346 5.825 130.570 3.807

20 0.592 0.028 1.466 0.073 3.026 0.190 27.956 1.772 165.930 8.322 115.759 6.712

25 0.523 0.050 1.341 0.150 2.616 0.220 24.612 2.538 145.877 14.116 102.631 10.458

30 0.462 0.090 1.127 0.184 2.308 0.362 21.622 3.415 127.016 17.094 89.037 15.048

35 0.359 0.120 1.005 0.259 1.995 0.509 18.618 4.699 109.581 25.422 76.576 20.477

40 0.335 0.140 0.838 0.301 1.724 0.631 15.694 5.907 93.552 34.974 65.435 26.709

45 0.279 0.171 0.745 0.382 1.414 0.798 13.180 7.269 78.695 41.918 54.861 33.762

50 0.236 0.221 0.578 0.426 1.190 0.919 10.942 8.759 64.818 54.083 46.340 41.685

Int. J. Mach. Learn. & Cyber. (2017) 8:849–864 861

123



changing of updating ratios for each data sets. The exper-

imental results are shown in Table 8, and the units for these

numbers are seconds. More detailed changing trend-line of

each of Algorithms 2 and 3 are illustrated in Fig. 4.

In each sub-figure (a)–(f) of Fig. 4, the x-coordinate

pertains to the ratio of the numbers of the inserted objects

and test data, while the y-coordinate concerns the com-

putational time. According to the experimental results in

Table 8 and Fig. 4, we can see, for the non-incremental

algorithm, the computational time for computing

approximations with insertion of the objects into the

universe U is increasing monotonically along with the

increase of ratios. On the contrary, for the incremental

algorithm, we can see that the computational efficiency

for computing approximations is changing smoothly along

with the increase of inserting ratios. It’s easy to get the

incremental algorithm always performs faster than the

non-incremental algorithm for computing approximations.

So, the incremental algorithm is efficiency when the

objects insert into the universe, especially the original

data set is an big data set and when the changing data set

relatively small is very efficiency.
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Fig. 3 A comparison of non-incremental (Algorithm 1) and incremental (Algorithm 2) Algorithms versus the deleting ratio of data

Table 8 A comparison of computational time between Algorithms 1 and 3 versus different updating rates when inserting objects (unit is second)

Ins. (%) EE (s) AS (s) WQ-r (s) WQ-w (s) LR (s) SAD (s)

Static Inc. Static Inc. Static Inc. Static Inc. Static Inc. Static Inc.

10 0.369 0.007 0.936 0.015 1.950 0.010 17.877 0.070 106.236 0.404 68.203 0.310

20 0.418 0.012 1.107 0.020 2.202 0.040 20.529 0.310 119.949 1.644 78.034 1.121

30 0.521 0.030 1.201 0.040 2.465 0.070 23.698 0.627 134.391 3.741 86.640 2.447

40 0.539 0.060 1.341 0.060 2.768 0.130 27.078 1.114 149.742 6.572 96.938 4.316

50 0.592 0.089 1.466 0.090 3.042 0.200 29.641 1.720 165.947 10.296 107.142 6.699

60 0.654 0.152 1.637 0.140 3.354 0.310 32.572 2.498 182.948 14.831 119.743 9.621

70 0.698 0.210 1.793 0.210 3.679 0.390 35.395 3.407 200.819 20.112 141.846 13.117

80 0.764 0.226 1.989 0.302 4.013 0.504 38.960 4.443 219.678 26.214 153.966 17.080

90 0.829 0.312 2.178 0.365 4.360 0.631 42.255 5.582 238.985 33.206 168.124 21.644

100 0.891 0.374 2.285 0.429 4.751 0.782 46.264 6.886 259.343 40.974 182.621 26.680
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7 Conclusions

An information system evolves with time in the dynamic data

environment. The approximations may vary according to the

variation of the information system and dynamicallymaintain

approximations are crucial to the efficiency of knowledge

discovery. Therefore, how to effectively exploit the prior data

structure and knowledge to achieve the dynamic maintenance

of knowledge is vital to RST-based data analysis in the real

applications. In this paper, according to the extension of the

classical single-valued information system to the interval-

valued decision information system under the binary relation

Rd
A that we constructed from the interval similarity degree.

Then, we presented the dynamic maintenance strategies of

approximations in the IvDIS by adding or removing some

objects, respectively. Two incremental algorithms to update

approximations under the dynamic data set were introduced.

Experimental studies pertaining to six UCI data sets showed

that the incremental algorithms can improve the computa-

tional efficiency for updating approximations when the object

set in the information system varies over time and the data is

bigger the more effective.

The incremental technique is an effective way to

maintain knowledge in the dynamic circumstance. We just

have discussed the incremental methods for updating

approximations in IvDIS when the information system is

updated by inserting or deleting objects in this talk. In our

further work, we will extend the proposed approaches to

handle the problems of updating approximations when the

object attributes’ adding or deleting or attributes’ values

vary with time in interval-valued decision information

system. Furthermore, the studies of incremental updating

knowledge on fuzzy information system and other gener-

alized information systems based on rough set theory need

to further promote.
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